
The Ultimate Guide
to Drupal 8
Angela Byron, Director, Community Development, Acquia, Inc.

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

2 THE ULTIMATE GUIDE TO DRUPAL 8

Introduction . 3

Authoring Experience . 4

Mobile Improvements . 6

Multilingual++ . 8

Site Builders FTW . 11

Front-end Developer Improvements . 14

Back-end Developer Improvements . 20

Better, Right Down to the Core . 24

Your Burning Questions . 31

Table of Contents

The Ultimate Guide to Drupal 8

http://www.acquia.com

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

3 THE ULTIMATE GUIDE TO DRUPAL 8

Introduction
Whether you’re a site builder, module or theme developer, or simply an end user of a Drupal website,

Drupal 8 has tons in store for you. This ebook will enumerate the major changes in Drupal 8 for end

users, for site builders, for designers and front-end developers, and for back-end developers.

Note that since Drupal 8 is still under active development, some of the details here may change prior

to its release. Drupal 8 is now feature-frozen, so most information should remain relevant. Where

applicable, Drupal 7 contributed equivalents of Drupal 8 features will be noted.

Angela Byron is an open
source evangelist whose
work includes reviewing
and committing Drupal
core patches, supporting
community contributors,
coordinating with the
Drupal.org infrastructure
team, and evangelizing
Drupal. She is also a
Drupal 8 core committer.

Angela is the lead author of
O’Reilly’s first Drupal book,
entitled Using Drupal. Angie
is known as “webchick” on
drupal.org.

http://www.acquia.com

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

4 THE ULTIMATE GUIDE TO DRUPAL 8

Authoring Experience
A major area of focus in Drupal 8 was around the out-of-the-box experience for

content authors—the folks who actually use a Drupal website every day. Here are

some of the changes you’ll see.

Spark
Spark is an Acquia

initiative created by Dries

Buytaert to improve

Drupal core’s default

authoring experience.

The Acquia development

team for Drupal core

performed analysis of

both proprietary and open

source competitors to

Drupal and worked hard

over the course of the release in collaboration with other Drupal core contributors.

They helped make enhancements to Drupal core, all the while creating back ports

of key Drupal 8 UX improvements for Drupal 7 that can be used today.

WYSIWYG Editor
Gone are the days of typing HTML by hand (in the default install, at least). Drupal

8 ships with the CKEditor WYSIWYG editor. In addition to supporting what you’d

expect in a WYSIWYG editor—buttons for bold, italic, images, links, and so on—it

supports extras, such as easily editable image captions, thanks to CKEditor’s new

Widgets feature, developed specifically for Drupal’s use. Ensuring that we keep

the structured content benefits of Drupal in our WYSIWYG implementation

was a priority.

Drupal 8 also sports a drag-

and-drop admin interface for

adding and removing buttons

in the WYSIWYG toolbar, which

automatically syncs the allowed

HTML tags for a given text format,

vastly improving usability. Buttons

are contained in “button groups”

with labels that are invisible to

the naked eye, but that can be

read by screen readers, providing

an amazing, accessible editing

experience for website visitors.

Drupal 8’s Editor module wraps the WYSIWYG integration, so other libraries can be

tightly integrated as well in contrib.

http://www.acquia.com
http://buytaert.net/announcing-spark-authoring-improvements-for-drupal-7-and-drupal-8
http://buytaert.net/announcing-spark-authoring-improvements-for-drupal-7-and-drupal-8
http://buytaert.net/announcing-spark-authoring-improvements-for-drupal-7-and-drupal-8
http://drupal.org/project/spark
http://drupal.org/project/spark
http://ckeditor.com
http://docs.ckeditor.com/#%21/guide/dev_widgets
http://wimleers.com/article/drupal-8-structured-content-authoring-experience
http://wimleers.com/article/drupal-8-structured-content-authoring-experience
http://wimleers.com/article/drupal-8-structured-content-authoring-experience

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

5 THE ULTIMATE GUIDE TO DRUPAL 8

In-place Editing
In Drupal 7, if you need

to make a correction on

a website—for example,

a typo, or a missing

image—you must use a

back-end form, which is

visually separated from the

front-end website where

content will appear. The

Preview button doesn’t

help, because the results

of preview are shown in the administrative theme (twice, in case you missed it the

first time).

Drupal 8’s new in-place editing feature allows editors to click into any field within a

piece of content and edit it right on the front-end of the site, without ever visiting the

back-end form. Full node content, user profiles, custom blocks, and more are all in-

place editable as well.

This in-place editing feature has been backported to Drupal 7 as the Quick Edit

module (formally Edit module).

Redesigned Content Creation Page
A community-led

effort from Drupal’s

Usability team resulted

in a redesigned content

creation page in Drupal 8.

It contains two columns:

one for the main fields (the

actual “content” part of your

content) and another for the

“extras”—optional settings

that are used less often. The

hope is that the new design will create a less overwhelming experience for content

authors and allow them to focus more on the task at hand.

Refreshed Admin
Theme
Although still undergoing

development, you’ll find

the administrative theme

in Drupal 8 a refresh of

Drupal 7’s, with a new

style guide for the

“Seven” admin theme.

Draft Support in Core
API support was added as an under-the-hood change in core to support content

draft revisions. This change should make publishing workflow modules, such as

Workbench, much easier in Drupal 8 and beyond.

http://www.acquia.com
https://drupal.org/project/quickedit
http://drupal.org/project/edit
https://groups.drupal.org/node/214898
https://groups.drupal.org/node/214898
https://groups.drupal.org/node/214898
https://drupal.org/project/issues/search/drupal?project_issue_followers=&status%5B%5D=Open&issue_tags_op=%3D&issue_tags=styleguide
https://drupal.org/project/issues/search/drupal?project_issue_followers=&status%5B%5D=Open&issue_tags_op=%3D&issue_tags=styleguide
https://groups.drupal.org/node/283223
https://groups.drupal.org/node/283223
https://groups.drupal.org/node/283223
https://groups.drupal.org/node/283223
https://drupal.org/project/workbench

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

6 THE ULTIMATE GUIDE TO DRUPAL 8

Mobile Improvements
In addition to authoring experience improvements, another huge area of focus for

Drupal website end users is on features that make Drupal 8 more mobile-friendly out

of the box to keep up with a global explosion of mobile devices worldwide.

Mobile First
You’ll find that Drupal 8 has been designed with mobile in mind, from the installer to

the modules page. Even new features, such as in-place editing, are designed to work

on teensy screens. Give Drupal 8 a try in your device of choice, and let us know

what you think.

Also, you’ll find a search box on the modules page. Check out Module Filter for a

similar experience in Drupal 7.

Responsive-ize ALL Things (Themes, Images, Tables…)
To support the unimaginable array of Internet-enabled devices coming in the next

5+ years, Drupal 8 incorporates responsive design into everything it does.

For starters, all core themes are now responsive and automatically reflow elements,

such as menus and blocks, to fit well on mobile devices (if the viewport is too narrow,

horizontal elements will switch to a vertical orientation instead). Images that show up

large on a desktop shrink down to fit on a tablet or smartphone, thanks to built-in

support for responsive images.

Drupal 8 also provides support for responsive tables, so table columns can be

declared with a high, medium, or low importance. On wide screens, all the columns

show, but as the screen size narrows, the less important columns start dropping

off so everything fits nicely. This API is also built into the Views module, so you can

configure your own responsive admin screens.

http://www.acquia.com
https://drupal.org/node/2152519
https://drupal.org/project/module_filter

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

7 THE ULTIMATE GUIDE TO DRUPAL 8

The Responsive Bartik and Responsive Tables modules can make Drupal 7

behave similarly. Numerous responsive base themes for Drupal 7, including

Omega and Zen, help you build a responsive design for your website.

Mobile-friendly Toolbar
Drupal 8 now sports a shiny new administrative toolbar that automatically expands

and orients itself horizontally on wide screens and collapses down to icons and

orients vertically for smaller screens. Like all new front-end features in Drupal 8, this

one got tons of accessibility love, so it’s easy for screen reader users to jump around

to various parts of the site.

If you’re interested in this feature for Drupal 7, check out the Mobile Friendly

Navigation Toolbar module.

Front-end Performance
One of the biggest factors that can make or break the mobile experience is the raw

performance of a website. As a result, a lot of work went into minimizing Drupal 8’s

front-end footprint. In many cases, native JavaScript replaced jQuery, and out-of-the-

box Drupal 8 loads zero JavaScript files for anonymous visitors. Additionally, lighter-

weight alternatives that are mobile friendly replaced JavaScript-intensive features,

such as the Overlay module: A simple “Back to site” link in the admin toolbar is visible

while in an administrative context. See Escape Admin for a Drupal 7 equivalent.

http://www.acquia.com
https://drupal.org/project/responsive_bartik
https://drupal.org/project/responsive_tables
http://drupal.org/project/omega
http://drupal.org/project/zen
https://drupal.org/project/navbar
https://drupal.org/project/navbar
https://drupal.org/project/escape_admin

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

8 THE ULTIMATE GUIDE TO DRUPAL 8

Multilingual++

The Multilingual Initiative (D8MI), led by Acquia’s own Gábor Hojtsy with

participation of over 1,000 contributors, is a major development focus for

Drupal 8. Check out Gábor’s excellent Drupal 8 Multilingual Tidbits series if

you’re interested in all the details about D8MI.

Multilingual First
You’ll see Drupal 8’s multilingual roots immediately at the beginning of the installer.

Drupal 8 auto-detects the language from your browser and then auto-selects that

option in the drop-down for your convenience. But even better, if you install Drupal in

a non-English language (or later add a new language to your site), Drupal 8 automati-

cally downloads the latest interface translations from https://localize.drupal.org,

so you can perform your entire site installation and setup in your native language.

This is in contrast to Drupal

7, which presented us-

ers with a wall of text (in

English), explaining how to

place downloaded files into

particular directories in order

to proceed.

This works for right-to-left languages, such as Arabic, too. (Drupal 8 is still in

development, so some translations may be missing some strings.)

Drupal 8 does away with the concept of English as a “special” language. If you

select a language other than English here, the English option will no longer show

in your site configuration unless explicitly turned on. Also, you can make English

“translatable” so that you can convert strings, such as “Log in / Log off” to

“Sign in / Sign off.”

http://www.acquia.com
http://www.drupal8multilingual.org/
https://www.acquia.com/about-us/team/g-bor-hojtsy
http://www.drupal8multilingual.org/team
http://hojtsy.hu/multilingual-drupal8

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

9 THE ULTIMATE GUIDE TO DRUPAL 8

Fewer Modules, Packing a Bigger Punch
Building a multilingual site in Drupal 7 requires about 30 contributed modules, and

a lot of tricky configuration. In Drupal 8, all this functionality (and more) has been

streamlined into just four modules, together making Drupal 8 more multilingual-

friendly than all the Drupal 7 contributed modules combined.

 � Language provides Drupal 8’s underlying language support. It is the base
module and is required by the other multilingual modules.

 � Configuration Translation makes things like blocks, menus, views, and so
on, translatable. (Similar to Internationalization in Drupal 7).

 � Content Translation makes things, such as nodes, taxonomy terms, and
comments translatable. (It is not the same as core’s Content Translation
module in Drupal 7; it is much more akin to Entity Translation.)

 � Interface Translation makes Drupal’s user interface itself translatable. (It is the
same as the Locale core module in Drupal 7.)

Why four modules and not just one, you ask? Because single-language, non-English

sites are also a valid use case, and even multilingual sites may or may not need some

of these features (for example, a desire to always keep user-generated content in

its native language). This sort of granularity allows site builders to choose whatever

combination meets their sites’ specific use cases.

Language Selection on ALL Things
Everything from system configuration settings to site components, such as blocks,

views, and menus, to individual field values on content are translatable.

For content entities (comments, nodes, users, taxonomy terms, and so on), you

have even more options, such as the ability to configure the visibility of the language

selector, and whether newly created content defaults to the site’s default language,

the content author’s preferred language, or some other value.

http://www.acquia.com
https://drupal.org/project/entity_translation

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

10 THE ULTIMATE GUIDE TO DRUPAL 8

More Streamlined Translation UIs
Tons of effort went into improving the user experience of Drupal 8’s multilingual

functionality. You’ll see much more streamlined translation and well-integrated

interfaces throughout.

Transliteration Support
One really handy addition to Drupal 8 is the inclusion of the Transliteration module

in core. It automatically converts special characters such as “ç” and “ü” to “c” and

“u” for friendlier machine names, file uploads, paths, and search results.

...And More!
Here are some extras for site builders that are worth mentioning:

 � Several of the pages in core that are using Views allow for much easier
language-based customization, especially the admin views, where adding
language filters, a language column, and so on, are easy to put together.

 � Unlike the Drupal 7 Entity Translation module integration, Drupal 8 core’s
Content Translation module integrates well with Search in core, and search
API gets more language information as well.

 � The language selection system now supports a separate admin language, for
easier management of multilingual sites for site admins.

http://www.acquia.com
https://drupal.org/project/transliteration

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

11 THE ULTIMATE GUIDE TO DRUPAL 8

Site Builders FTW
Although the authoring experience improvements and mobile improvements

in Drupal 8 tend to focus on end users and content authors of Drupal websites,

Drupal 8 also includes a huge push to improve the site building tools.

Views in Core!
The Views module, the most frequently used module in Drupal contrib, is now

baked into Drupal 8 out of the box. Hooray! And not only is the Views module in

core, but most of the main administrative listings such as Content, People, and Files,

in addition to various sidebar blocks, several RSS feeds, and the default front page

have also been converted to Views. This makes customizations of these elements—

for example to add a “Full name” search to the People listing, or thumbnails next to

items in the Content listing—just a few clicks away.

Everything you know and love from Views is included—and even a few extras such

as mobile-friendly administration, some subtle user experience and accessibility

improvements, the ability to create responsive table listings, and the ability to turn

any listing into a REST export that can be consumed by a mobile application or other

external service.

More and Better Blocks
In Drupal 8, you’ll notice a few new features as they relate to blocks. First, just like

with Views, several previously hard-coded site components have been converted to

blocks, including breadcrumbs, site name, and slogan—with more in the works. This

makes it easier to adjust page organization in the user interface.

Second, the limitation of being able to place a block into only one region is gone;

you can place blocks and re-use them in multiple places, for example, a “Navigation”

block in both the header and footer. No more need for the MultiBlock module!

And finally, you can now create custom block types, just as you can create custom

content types, to allow for granular control over different styling, different fields, and

more. This allows you to create, for example, an “Ad” block type with an “Ad code”

field that can contain JavaScript snippets from a remote ad service.

http://www.acquia.com
https://drupal.org/project/views
https://drupal.org/project/usage
https://www.drupal.org/project/multiblock

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

12 THE ULTIMATE GUIDE TO DRUPAL 8

Improved and Expanded Entity and Field Features
Two of Drupal 7’s most powerful site builder features—Entities and Fields—have

been expanded in Drupal 8, making it easier than ever to build data models for

the structured content you want to manage inside Drupal.

More Field Types
In addition to the Drupal 7 field types such as Taxonomy, Image, and File,

Drupal 8 adds some powerful new fields such as Entity Reference and Date,

along with commonly needed simple fields such as Phone, Email, and Link. Even

the setting for whether comments are open or closed has been moved to a field,

making any entity type commentable.

Form Modes
In addition to Drupal 7’s “view modes” feature, which allows creating multiple display

options for content in different contexts (for example, showing a thumbnail image on

your content’s teaser view and a full-size image on default view), Drupal 8 adds the

notion of “form modes” to do the same for data-entry forms. Here’s an example of

configuring the user registration form differently from the user edit form, so you can

hide the more esoteric fields and provide a simpler user experience.

http://www.acquia.com

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

13 THE ULTIMATE GUIDE TO DRUPAL 8

Take a Tour
Drupal 8’s new tour module gives site builders contextual, step-by-step tooltips

with overviews of its administrative interfaces, help to introduce new terminology,

and walk through the steps involved in configuring components of the site.

Both Less and More, Module-wise
You’ll find Drupal 8 missing some modules that shipped with Drupal 7, namely

Blog, Dashboard, Open ID, Overlay, PHP filter, Poll, Profile, and Trigger (as well

as the Garland theme). You’ll find several new modules in which functionality

has been split out into more granular chunks, such as Menu Links/Menu UI,

Block/Custom Block, Ban/History/Actions (formally baked into User/Node/System

module), and so on.

Heather James’s “Drupal 8 Site Building Preview—Less Is More” has a great

rundown of the state of modules, including contrib modules that are now rendered

obsolete due to the functionality that ships with Drupal 8 core.

The bottom line: Drupal core will ship with enough functionality out of the box that for

the first time site builders should be able to create fairly sophisticated sites without

having to install 30+ contributed modules. Hooray!

Migration Path
Although the UI is not yet in Drupal 8 core, the major version upgrade path has been

replaced with a migration path, courtesy of a D8 port of the Migrate and Migrate

Drupal-to-Drupal modules. Both a migration path from Drupal 6 (already in Drupal

8.x) and Drupal 7 (under active development) will be supported in Drupal 8’s final

release. The main difference to you as a site builder is that instead of keeping your

site offline for hours while a variety of scripts attempt to upgrade your production

database schema in-place, you’ll keep your Drupal 6/7 site running while you build

the new Drupal 8 site and keep running the migration path (provided by core/contrib/

custom modules) until everything is moved over satisfactorily—doing a simple

webroot/DNS swap at the end with next to zero downtime.

For more on Drupal 8’s improved major version upgrade process, check out Moshe

Weitzman’s “Drupal 8—Improved Upgrade Process” blog from December 2013.

http://www.acquia.com
https://www.acquia.com/blog/tutorial-drupal-8-site-building-preview-less-more
https://drupal.org/project/migrate
https://drupal.org/project/migrate_d2d
https://drupal.org/project/migrate_d2d
https://www.acquia.com/blog/d8migrate

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

14 THE ULTIMATE GUIDE TO DRUPAL 8

Front-end Developer Improvements
Drupal 8 contains a lot of nifty front-end developer improvements, including

HTML5, libraries, accessibility enhancements, new themes and UI elements, and

faster performance to name a few.

HTML5
All of Drupal’s output has been converted to use semantic HTML5 markup, as

opposed to XHTML in Drupal 7. This means you’ll find tags such as <nav>,

<header>, <main>, and <section> in Drupal’s default templates, as part of an

overarching effort to clean up Drupal’s default markup.

HTML5 also brings new form input types, such as date, tel, and email, that can

provide targeted user interfaces on mobile devices (for example, only showing the

number pad when entering phone numbers) to help streamline data entry. Drupal’s

Form API provides these additional types so you can easily create these new types

of fields. The Drupal 7 equivalent can be found in the Elements module.

Additionally, you’ll find HTML5/CSS3 replacements for several things that

previously needed custom workarounds: resizing on text areas and first/last/odd/

even classes, replaced by CSS3 pseudo selectors; and collapsible fieldsets largely

replaced by the <details> element.

New Front-end Libraries and Helpers
Although Drupal has shipped with jQuery since version 5 and shipped with jQuery

UI since Drupal 7, Drupal 8 brings with it an expanded array of front-end libraries—f

or example, Modernizr (which makes it easy to detect if a browser supports touch

or HTML5/CSS3 features), Underscore.js (a lightweight JS helper library), and

Backbone.js (a model-view-controller JavaScript framework). Together, these

additional libraries allow for creating mobile-friendly, rich front-end applications in

Drupal, and they’re used by several of the Authoring Experience and Mobile

feature improvements to Drupal 8.

http://www.acquia.com
https://drupal.org/project/elements
http://modernizr.com
http://underscorejs.org
http://backbonejs.org

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

15 THE ULTIMATE GUIDE TO DRUPAL 8

Native Schema.Org Output
In a great boon for search-engine optimization, Drupal 8’s RDFa module now

outputs schema.org markup. This makes the task much easier for search engines

such as Google, Yahoo!, Bing, and Yandex to extract data, such as who the author

of a given piece of content is, in order to add meaning behind the content.

Even More Improved Accessibility
Drupal 8 has expanded on Drupal 7’s existing stellar accessibility record

with even more improvements. Drupal 8 extensively uses WAI-ARIA attributes

to provide meaning on rich, front-end applications, such as the in-place editor

and responsive toolbar. On the back-end, Drupal 8 provides a variety of new

Accessibility tools for JavaScript (JS), which allows module developers

to create accessible applications easily. An ongoing effort seeks to provide

automated testing for accessibility features via the Quail library.

The following video, extracted from Dries’s DrupalCon Prague Keynote,

demonstrates how these new accessibility features appear to assistive

technology users.

New Theme System: Twig
Drupal 8 introduces Twig, which takes the place of the PHPTemplate-based theme

system in Drupal 7 and below. Twig, like many similar templating engines from other

projects, allows designers with HTML/CSS knowledge to modify markup without

needing to be a PHP expert. For example, instead of needing to understand the

syntax differences between deeply-nested arrays versus objects and when to use

each, a simple {{ foo.bar }} statement does the trick. Simple conditional and

looping logic can be contained in {% ... %} tags.

http://www.acquia.com
http://schema.org
http://schema.org
https://drupal.org/about/accessibility
http://www.w3.org/WAI/intro/aria
https://drupal.org/node/1973218
https://drupal.org/node/1973218
https://www.acquia.com/resources/podcasts/acquia-podcast-98-meet-kevin-miller-accessibility-quail
https://www.acquia.com/resources/podcasts/acquia-podcast-98-meet-kevin-miller-accessibility-quail
https://www.youtube.com/watch?v=ipOc1km2uEc
https://prague2013.drupal.org/keynote/dries-buytaert
http://twig.sensiolabs.org
http://twig.sensiolabs.org
https://www.youtube.com/watch?v=ipOc1km2uEc

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

16 THE ULTIMATE GUIDE TO DRUPAL 8

The following is an excerpt from page.html.twig (the equivalent of page.tpl.php in

Drupal 7), showing off some Twig features and some HTML5 tags and native ARIA

support as well:

<?php
 <main role="main">
 {# link is in html.html.twig #}

 <div class="layout-content">
 {{ page.highlighted }}

 {{ title_prefix }}
 {% if title %}
 <h1>{{ title }}</h1>
 {% endif %}
 {{ title_suffix }}

 {{ tabs }}

 {% if action_links %}
 <nav class="action-links">{{ action_links }}</nav>
 {% endif %}

 {{ page.content }}

 {{ feed_icons }}
 </div>{# /.layout-content #}

 {% if page.sidebar_first %}
 <aside class="layout-sidebar-first"

 role="complementary">
 {{ page.sidebar_first }}
 </aside>
 {% endif %}

 {% if page.sidebar_second %}
 <aside class="layout-sidebar-second"

 role="complementary">
 {{ page.sidebar_second }}
 </aside>
 {% endif %}

 </main>
?>

How do you provide those variables if you can no longer use PHP in templates

directly? With THEME_preprocess_HOOK() functions, you do it the same way

you’ve always done (although they are in a file named THEME.theme instead of

template.php). Twig effectively forces a separation of presentation and business

logic, and all variables going into template files are automatically escaped, far

reducing the risk of dangers like XSS vulnerabilities and making theming in Drupal 8

more secure than ever before.

Another nice tidbit from Twig is that if you turn on debug mode using

debug: true; in your site’s services.yml file, helpful code comments

will be displayed throughout Drupal’s generated markup to inform you where to

find the template for the markup you’re trying to change, and which particular

“theme suggestion” is being used to generate the markup. For example:

 <div class="content">

 <!-- THEME DEBUG -->
 <!-- THEME HOOK: ‘node’ -->
 <!-- FILE NAME SUGGESTIONS:
 * node--1--full.html.twig
 * node--1.html.twig
 * node--article--full.html.twig
 * node--article.html.twig
 * node--full.html.twig
 x node.html.twig
 -->
 <!-- BEGIN OUTPUT from 'core/themes/bartik/templates/
 node.html.twig' -->
 <article data-history-node-id=”1” data-quickedit-entity-
 id=”node/1” role=”article” class=”contextual-region node
 node--type-article node--promoted node--view-mode-full
 clearfix” about=”/node/1” typeof=”schema:Article”>
 ...
 </article>

 <!-- END OUTPUT from 'core/themes/bartik/templates/node.
 html.twig' -->

 </div>

http://www.acquia.com

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

17 THE ULTIMATE GUIDE TO DRUPAL 8

It’s a bit like having the fabulous Theme developer module baked into core!

Fast by Default
Acquia’s own llama-loving performance guru Wim Leers posited that the best way

to make the Internet as a whole faster is to make the leading CMSes fast by

default. This means that CMSes need to enable their high-performance settings

out of the box rather than require users to be savvy enough to find them in all their

various locations. And in Drupal 8, that’s exactly what we’ve done. You’ll notice that

Drupal 8 ships with features such as CSS and JavaScript aggregation already turned

on for a much faster default installation. Huzzah!

What this means to you as a front-end developer is that by default Drupal is not

immediately in a good place to start theming, unless you manually turn off those

performance settings one by one (even hacking core’s CSS directly will show

absolutely no changes). Fortunately, Drupal 8 ships with a sites/example.

settings.local.php file for exactly this purpose. It hard codes the performance

settings to off, which is extremely useful in a development environment. Simply copy

it, rename it as sites/default/settings.local.php, and uncomment the

following lines in sites/default/settings.php:

<?php
if (file_exists(__DIR__ . '/settings.local.php')) {
include __DIR__ . '/settings.local.php';
}
?>

Your new settings.local.php file points to development.services.yml,

which contains some disabled-by-default settings about Twig specifically, for example

ones for turning on debug mode and turning off caching. Changing these settings

to true will definitely make your dev site slower but will also make theming much

easier, because you’ll be able to see the results of your changes to Twig templates

immediately, without having to clear the cache.

In other front-end performance-related news, while Drupal 8 will still ship with the

latest versions of jQuery and jQuery UI, a lot of movement is going away from using

libraries like this for run-of-the-mill JavaScript to keep front-end performance as quick

as possible, which is especially important for mobile devices. The default install of

Drupal 8 actually loads zero JavaScript for anonymous users!

Although more work needs to be done on performance optimizations, once it

ships, Drupal 8 should provide a much faster front-end experience for site visitors.

Hooray!

New UI Elements
Drupal 8 ships with several new UI elements that you can use in your own admin

screens, including modal dialogs and drop buttons, which were part of the Chaos

tool suite (ctools) module in Drupal 7 and below. Drupal 8 introduces the concept

of “button types,” “primary” (the default form action; in Seven theme styled as blue),

and “danger” (styled as red links) to help users quickly make correct choices when

confronted with multiple options on a form.

http://www.acquia.com
https://drupal.org/project/devel_themer
http://wimleers.com/article/performance-calendar-2013-making-the-entire-web-fast
http://wimleers.com/article/performance-calendar-2013-making-the-entire-web-fast
https://drupal.org/node/1744302
http://drupal.org/project/ctools
http://drupal.org/project/ctools

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

18 THE ULTIMATE GUIDE TO DRUPAL 8

Theme Responsively
As mentioned in the Mobile Improvements article, Drupal 8 ships with numerous

new responsive features, including responsive themes, toolbar, images, and tables.

To support these features, themes can now declare Breakpoints (the height, width,

and resolution at which a design changes to meet shifting browsers and devices) that

can be used by responsive features. (However, note that Move breakpoint settings

to theme and module *.info.yml files is a patch actively being worked on that

proposes changing the exact implementation.)

It’s also looking as though Drupal 8 will ship with support for the new <picture>

element, which browers have started to support. This will make for a significant

front-end performance improvement, particularly on mobile devices, because it

allows delivering smaller images (typically the heaviest part of any page load) for

smaller screens, saving data. (Thanks to Marc Drummond for this information.)

New Method of Selectively Adding JS/CSS to
the Page
Also on the performance front—in the past, if you wanted to add CSS or JS to

a particular page, you’d use the drupal_add_css() and drupal_add_js()

functions, respectively. Not anymore! You now insert any JS/CSS assets in the

#attached property of a render array. For example:

seven.theme

function seven_form_node_form_alter(&$form, &$form_state) {
...
 $form['#attached'] = array(
 'css' => array(drupal_get_path('module', 'node') . '/css/

node.module.css'),
);
...
}

Although this will work OK for one-off assets that don’t have any dependencies,

the more common and recommended approach is to register one or more

JS/CSS assets (along with their dependencies) as a library in your

MODULE/THEME.libraries.yml and then add a reference to the library

in the #attached property. For example:

seven.libraries.yml

 maintenance-page:
 version: VERSION
 js:
 js/mobile.install.js: {}
 css:
 theme:
 maintenance-page.css: {}
 dependencies:
 - system/maintenance

 install-page:
 version: VERSION
 js:
 js/mobile.install.js: {}
 css:
 theme:
 install-page.css: {}
 dependencies:
 - system/maintenance

 drupal.nav-tabs:
 version: VERSION
 js:
 js/nav-tabs.js: {}
 dependencies:
 - core/matchmedia
 - core/jquery
 - core/drupal
 - core/jquery.once
 - core/jquery.intrinsic

http://www.acquia.com
https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-2-mobile-improvements
https://drupal.org/node/18139
https://drupal.org/node/2271529
https://drupal.org/node/2271529
https://drupal.org/node/2260061
http://picture.responsiveimages.org
http://picture.responsiveimages.org
http://www.marcdrummond.com

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

19 THE ULTIMATE GUIDE TO DRUPAL 8

seven.theme

<?php
function seven_preprocess_install_page(&$variables) {
 // ...
 $libraries = array(
 '#attached' => array(
 'library' => array(
 'seven/maintenance-page',
 'seven/install-page',
),
),
);
 drupal_render($libraries);
}
?>

Although this isn’t quite as convenient as a quick in-line call to drupal_add_FOO(),

it does mean that these assets are now cacheable for improved performance, and

easily re-usable among different parts of the code base.

R.I.P. IE 6, 7, and 8
On a bit of a melancholy note, the last big improvement for front-end developers is

that at last, in a move applauded by web designers everywhere, Drupal 8 core has

officially dropped support for IE 6, 7, and 8, enabling the use of jQuery 2.0 and other

code that assumes modern HTML5/CSS3 browser support. (Note there’s also talk of

dropping support for Android 2.3 and below for the same reason.)

As a parting gift, html5shiv (an HTML5 polyfill for less

capable browsers) is included in D8 core so at least

IE 8 and below aren’t completely ignored, and the IE8

project in contrib is available for those who absolutely

must have IE8-compatible versions of core front-end

features. For the rest of us, we’re looking forward to

snappier front-end code that doesn’t have to worry

about limitations in 5+ year old browsers. Hooray!

And More?
Because Drupal 8 is still under active development, some aspects of the APIs are

not nailed down yet (and markup doesn’t freeze until RC). Here are a few of the big

remaining front-end efforts out there, which could use code and reviews:

 � Althought not complete yet (hint: Here’s a great way to learn Twig), there is
an ongoing effort to convert all core theme functions to Twig templates
so that theming works the same way no matter what is output on the
page, except in very rare cases where theme functions are still needed for
performance. This should make theming much more approachable, because
it would negate the requirement for designers to learn PHP to make trivial
markup alterations in almost all cases.

 � Convert page elements (title, tabs, actions, messages) into blocks and
Move menu_block module functionality into core would get rid of one-off
variables in favor of consistent placement/theming (as well as caching) of page
elements everywhere as blocks.

 � The Dream Markup movement arose to strip all the nasty cruft (extra <div>s
and whatnot) from Drupal’s markup. This movement just got some fresh
interest poured into it at DrupalCon Austin, resulting in a proposal to strip
down all Drupal core’s default markup to remove any extraneous cruft,
and provide a base theme with helpful classes/wrappers for equivalence with
the current status quo. Interesting times.

 � Also out of DrupalCon Austin, the Headless Drupal group formed out of a
desire to make it easier to use completely custom front-ends, for example in
Angular JS on top of Drupal.

http://www.acquia.com
https://drupal.org/node/2286601
https://code.google.com/p/html5shiv
https://drupal.org/project/ie8
https://drupal.org/node/1757550
https://drupal.org/node/507488
https://www.drupal.org/node/474004
https://drupal.org/node/1980004
https://www.drupal.org/node/2289511
https://www.drupal.org/node/2289511
https://groups.drupal.org/headless-drupal

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

20 THE ULTIMATE GUIDE TO DRUPAL 8

Back-end Developer Improvements

Drupal 8 gives you lots of back-end developer improvements, including an API

for configuring your system. All entities are now classed as objects. You also get

improved caching, better integration with third-party services, and lots of built-in

web services features. It just keeps getting better.

New Configuration Management System
Probably the most looked-forward-to change in Drupal 8, for both developers

and site builders, is the new configuration management system. In Drupal 7 and

below, both content and configuration were saved to the database (sometimes

with a mix of both in the same table), making deploying configuration changes

from one environment to another (for example, development to production) very

tricky. A variety of workarounds emerged for this, including hook_update_N(),

Features module, and of course the old standby: carefully writing the configuration

changes you made in development on a napkin and then manually repeating them

in production. However, all these were attempting to circumvent the fundamental

problem that Drupal core didn’t properly support configuration deployment

natively—until Drupal 8, that is.

In Drupal 8, all configuration changes (both standard admin settings forms, such

as site name, as well as any ConfigEntity including Views, user roles, and content

types) run through a unified configuration API. Each environment has both an

“active” store (where configuration settings are written to and read from on every

page load) as well as a “staging” store to hold configuration changes from other

environments that are about to be imported for review. For performance, the active

store is in a config table in the database (somewhat analogous to the variables

table in Drupal 7 and below)—though the storage location is swappable. The

Configuration Development module, for example, writes active configuration out

to YAML files in the file system, just as core does with the staging store.

Drupal 8 also ships with a basic UI to do both single and full configuration imports

and exports, and configuration can also be moved around via the command line

with Drush’s config-* commands, which is handy when using version control

systems such as Git.

The basic workflow (after making whatever configuration changes to your Drupal 8

site) is:

1. On the development site, export your site’s “active” configuration. You’ll receive a

tarball that consists of lots of YAML files.

2. On production, import the files, which places them into the config “staging” area.

3. In the configuration UI, view the list of what configuration settings have changed

and view a “diff” of changes in advance.

4. If changes are acceptable, synchronize them, which will replace production’s

current active store with the contents of staging and become the new values that

Drupal will use to build pages.

http://www.acquia.com
https://api.drupal.org/api/drupal/modules!system!system.api.php/function/hook_update_N/7
https://drupal.org/project/features
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Config!Entity!ConfigEntityInterface.php/interface/ConfigEntityInterface/8
https://api.drupal.org/api/drupal/core!modules!system!core.api.php/group/config_api/8
https://www.drupal.org/project/config_devel
https://github.com/drush-ops/drush

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

21 THE ULTIMATE GUIDE TO DRUPAL 8

Of course, there are some settings that are specific to a given environment and

that you don’t want to be deployed across environments. One such example is

a timestamp storing the last time cron ran. For these, there’s a “sister” API to the

configuration API named the State API for these more ephemeral settings.

What About Content Deployment?

While Drupal 8 core doesn’t ship with support for migrating content such as nodes,

users, and taxonomy terms between sites (although this could happen in a later

feature release such as 8.1.0 or 8.2.0), one welcome addition to Drupal 8 has been

the introduction of UUIDs (universally unique identifiers) to every piece of content,

such as b2423870-b19b-45e7-8407-076aee906870. These UUIDs can be used to

determine whether a piece of content exists on a given destination site, regardless

of whether the content’s numeric ID conflicts, making content imports/exports

infinitely easier. Keep your eyes on the Deploy module for a Drupal 8 version

that provides this feature. If you’re still on Drupal 7, you can get similar functionality

to what core offers via the Universally Unique IDentifier module.

Entities, Entities, Everywhere!
Entities were a key new feature and concept in Drupal 7, abstracting the ability to

add fields to other types of content than just nodes, such as users and taxonomy

terms. However, the Drupal 7 core API was severely limited and required using

modules, such as the Entity API module, to further flesh out basic functionality,

such as saving and deleting.

In Drupal 8, the Entity API has been completely rehauled to not only fill the gaps

in functionality from Drupal 7 but also to greatly improve developer experience. All

entities are now classed objects that implement a standard EntityInterface (no

more guessing which of the 100 entity hooks you’re required to implement), with

baked-in knowledge about the active language. Compare and contrast:

 <?php

 # Drupal 7 code.

 $node->title

 $node->body[$langcode][0]['value']

with

 # Drupal 8 code.

 $node->get('title')->value

 $node->get('body')->value

 ?>

Nearly anything you can create more than one of has been converted to an entity,

bringing greater consistency to Drupal development. There are two kinds of these

entities: Config entities and Content entities. What’s the difference?

http://www.acquia.com
https://api.drupal.org/api/drupal/core%21modules%21system%21core.api.php/group/state_api/8
https://www.drupal.org/project/deploy
https://www.drupal.org/node/2112799
http://drupal.org/project/uuid
https://www.drupal.org/project/entity
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Entity!EntityInterface.php/interface/EntityInterface/8

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

22 THE ULTIMATE GUIDE TO DRUPAL 8

Content entities also sport some nifty new features compared to Drupal 7, such as

revisions on not just nodes but also custom blocks and the ability to add comments

to any content entity (you can even have comments on comments). The “Site

Builder Improvements” article has more information about other entity-related

features.

Wither hook_schema()?

What does this mean for you as a developer? It means that between the Entity

API and the Configuration/State API, there is almost never a reason to create and

manage your own database tables by hand in Drupal 8. By using these standard

APIs, you’ll benefit from writing less brittle code and benefit from portability to other

databases such as MongoDB.

Web Services
A major focus for Drupal 8, both to enable the creation of Drupal-backed mobile

applications and to facilitate cross-site communication and better integration with

third-party resources, is a native REST API built into Drupal 8 and provided by

the RESTful Web Services suite of modules. This allows for fine-grained

configuration of which resources should be available (nodes, taxonomy, users, and

so on), what HTTP methods are allowed against those resources (for example,

GET, POST, PATCH, DELETE), and which formats and authentication are used to

access those resources. See the contributed REST UI module that provides an

interface for this configuration. For each allowed HTTP method, you can set

permissions on which role(s) on your site may access the resources via that

method. This allows anonymous users to GET but only administrators to POST,

for example.

Once the various RESTful Web Services modules are configured properly, you can

get a big clump of machine-readable data representing your site content, such as

...
 [title] => Array
 (
 [0] => Array
 (
 [value] => Hello, world!
 [lang] => en
)

)
...
[body] => Array
 (
 [0] => Array
 (
 [value] => <p>This is my awesome

 article.</p>
 [format] => basic_html
 [summary] =>
)

)
...

What good is that? Plenty! Here’s one example of retrieving information from Drupal 8

in JSON and displaying it in a standalone jQuery Mobile app.

Drupal 8 ships with a new library named Guzzle with easy syntax to retrieve and

post data to Drupal or to talk to third-party Web Services, such as Twitter or Github.

Content Entities Config Entities
 � Customized fields
 � Stored in database tables (by default)
 � Mostly created on front-end

 � Deployed to different environments
 � Stored in configuration system
 � Mostly created on back-end

Examples Examples
 � Nodes
 � Custom Blocks
 � Users
 � Comments
 � Taxonomy Terms
 � Menu Links
 � Aggregator Feeds/Items

 � Content Types
 � Custom Block Types
 � User Roles
 � Views
 � Taxonomy Vocabularies
 � Menus
 � Image Styles

http://www.acquia.com
https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-3-site-builder-improvements
https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-3-site-builder-improvements
https://drupal.org/documentation/modules/rest
https://www.drupal.org/project/restui
https://github.com/webchickenator/d8ws
http://guzzle.readthedocs.org/en/latest/
https://gist.github.com/webchickenator/e1900c641ffc6dac6cfc

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

23 THE ULTIMATE GUIDE TO DRUPAL 8

Another Web Services feature in Drupal 8 offered by the RESTful Web Services

module is the ability to add a “REST export” display to any view.

This means you can easily create JSON or XML feeds of custom dynamic content

from your Drupal site, just by clicking them together!

Improved Caching
And on a final happy note, caching in Drupal 8 has been improved across the board.

 � Entity cache module is now in core.

 � Cache tags allow for much more granular cache clearing when content

or settings are updated on the site.

 � All caching features such as CSS/JS aggregation are turned on out of the
box, making Drupal 8 fast by default.

 � While we’re still working hard on improving D8’s performance overall,
this extra caching should help most page loads come up lickety-split.

http://www.acquia.com
https://www.drupal.org/project/entitycache
https://www.drupal.org/node/1884800
http://wimleers.com/article/performance-calendar-2013-making-the-entire-web-fast
https://www.drupal.org/node/1744302

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

24 THE ULTIMATE GUIDE TO DRUPAL 8

Better, Right Down to the Core

Drupal 8 made some major API changes that embrace the way the rest of the

world works.

“Proudly Found Elsewhere”
As a counterpoint to “Not Invented Here”, “Proudly Found Elsewhere” represents

a mind-shift among Drupal core developers to find the best tool for the job and

incorporate it into the software, versus creating something custom and specific to

Drupal, which only we benefit from.

You’ll see this philosophy change in many aspects of Drupal 8. Among the external

libraries we’ve pulled in are PHPUnit for unit testing, Guzzle for performing HTTP

(web service) requests, a variety of Symfony components (Create your own

framework on top of the Symfony2 Components is an excellent tutorial for

learning more about those), and Composer for pulling in external dependencies

and class autoloading, and more.

But this philosophy change also extends to the code base itself. We made big

architecture changes in Drupal 8 to embrace the way the rest of the world is

writing code: decoupled, object-oriented (OO), and embracing modern language

features of PHP, such as namespaces and traits.

Getting OOP-y with It
Let’s look at a few code samples to illustrate Drupal 8’s “Proudly Found Elsewhere”

architecture in action.

Drupal 7: example.info

name = Example
description = An example module.
core = 7.x
files[] = example.test
dependencies[] = user

All modules in Drupal need a .info file to register themselves with the system. The

example above is typical of a Drupal 7 module. The file format is “INI-like” for ease

of authoring, but also includes some “Drupalisms” such as the array[] syntax

so standard PHP functions for reading/writing INI files can’t be used. The files[]

key, which triggers Drupal 7’s custom class autoloader to add code to the registry

table, is particularly Drupalish, and module developers writing OO code must add a

files[] line for each file that defines a class, which can get a little bit silly.

Drupal 8: example.info.yml

name: Example
description: An example module.
core: 8.x
dependencies:
 - user
Note: New property required as of Drupal 8!
type: module

http://www.acquia.com
http://en.wikipedia.org/wiki/Not_invented_here
https://phpunit.de
http://guzzle.readthedocs.org/en/latest
http://symfony.com
https://github.com/fabpot/Create-Your-Framework/tree/master/book
https://github.com/fabpot/Create-Your-Framework/tree/master/book
https://getcomposer.org
http://buytaert.net/why-the-big-architectural-changes-in-drupal-8
http://buytaert.net/why-the-big-architectural-changes-in-drupal-8
http://drupalcode.org/project/views.git/blob/refs/heads/7.x-3.x:/views.inf

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

25 THE ULTIMATE GUIDE TO DRUPAL 8

In embracing “Proudly Found Elsewhere,” info files in Drupal 8 are now simple

YAML files—the same as those used by other languages and frameworks. The

syntax is very similar (mostly : instead of = everywhere, and arrays formatted

differently), and it remains very easy to read and write these files. The awkward

files[] key is gone, in favor of the PSR-4 standard for automatic class

autoloading via Composer. The English version of that sentence is that by

following a specific class naming/folder convention (modules/example/src/

ExampleClass.php), Drupal can pick up OO code automatically without requiring

manual registration.

Drupal 7: hook_menu()

example.module

<?php
/**
 * Implements hook_menu().
 */
function example_menu() {
 $items['hello'] = array(
 'title' => 'Hello world',
 'page callback' => '_example_page',
 'access callback' => 'user_access',
 'access arguments' => 'access content',
 'type' => MENU_CALLBACK,
);
 return $items;
}

/**
 * Page callback: greets the user.
 */
function _example_page() {
 return array('#markup’ => t('Hello world.'));
}
?>

This is a pretty basic “hello world” module in Drupal 7, which defines a URL

at /hello that when accessed checks to make sure the user has “access

content” permissions before firing the code inside _example_page() which

prints “Hello world.” to the screen as a fully themed page. The hook_menu() is an

example of what is pejoratively known as an ArrayPI, a common pattern in Drupal 7

and earlier. The problem with ArrayPIs is that they are difficult to type (for example,

have you ever forgotten the return $items and then spent the next 30 minutes

troubleshooting a problem?), have no IDE autocompletion for what properties are

available, and the documentation must be manually updated as keys are changed

and added. The documentation for hook_menu() shows that it also suffers

from trying to do too many things. It’s used for registering path-to-page/access

callback mappings, but it’s also used to expose links in the UI in a variety of ways:

swapping out the active theme, and much more.

Drupal 8: Routes + Controllers

example.routing.yml

example.hello:
 path: '/hello'
 defaults:
 _content: '\Drupal\example\Controller\Hello::content'
 requirements:
 _permission: 'access content'

src/Controller/Hello.php

<?php
namespace Drupal\example\Controller;

use Drupal\Core\Controller\ControllerBase;

/**
 * Greets the user.
 */
class Hello extends ControllerBase {
 public function content() {
 return array('#markup' => $this->t('Hello world.'));
 }
}
?>

http://www.acquia.com
http://www.yaml.org
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://getcomposer.org
https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_menu/7

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

26 THE ULTIMATE GUIDE TO DRUPAL 8

In Drupal 8’s new routing system, the path-to-page/access-check logic now lives

in a YAML file using the same syntax as the Symfony routing system. The page

callback logic now lives in a “Controller” class (as in the standard model-view-

controller pattern) in a specially named folder, per the PSR-4 standard. It’s declared

in the example module’s namespace to allow the example module to name its

classes whatever it wants without worry of conflicting with other modules that might

also want to say Hello (Drupal is very friendly, so it’s possible!). And finally, the class

pulls in the logic from the ControllerBase class in via the use statement and

extends it, which gives the Hello controller access to all ControllerBase’s

convenient methods and capabilities, such as $this->t() (the OO way of calling

the t() function). And, because ControllerBase is a standard PHP class, all its

methods and properties will autocomplete in IDEs, so you aren’t guessing at what it

can and can’t do for you.

Drupal 7: hook_block_X()
block.module

<?php
/**
 * Implements hook_block_info().
 */
function example_block_info() {
 $blocks['example'] = array(
 'info' => t('Example block'),
);
 return $blocks;
}

/**
 * Implements hook_block_view().
 */
function example_block_view($delta = '') {
 $block = array();
 switch ($delta) {
 case 'example':
 $block['subject'] = t('Example block');
 $block['content'] = array(
 'hello' => array(
 '#markup' => t('Hello world'),
),
);
 break;
 }
 return $block;
}
?>

Here’s an example of a typical way in which you define “pluggable thingies” in

Drupal (blocks, image effects, text formats, and so on): some kind of _info()

hook, along with one or more other hooks to perform additional actions (view,

apply, configure, and more). In addition to these largely being ArrayPIs, this time

they’re actually even worse “mystery meat” APIs, because the overall API itself is

completely undiscoverable except by very careful inspection of various modules’

.api.php files (provided they exist, which is not a guarantee) to discover which

magically named hooks you need to define to implement this or that behavior.

Some are required, some aren’t. Can you guess which is which?

Drupal 8: Blocks (and many other things) as Plugins

In Drupal 8, these “mystery meat” APIs have now largely moved to the new

Plugin system, which looks something like this:

src/Plugin/Block/Example.php

<?php
namespace Drupal\example\Plugin\Block;

use Drupal\Core\Block\BlockBase;

/**
 * Provides the Example block.
 *
 * @Block(
 * id = "example",
 * admin_label = @Translation("Example block")
 *)
 */
class Example extends BlockBase {
 public function build() {
 return array('hello' => array(
 '#markup' => $this->t('Hello world.')
));
 }
}
?>

http://www.acquia.com
https://www.drupal.org/developing/api/8/routing
http://symfony.com/doc/current/book/routing.html
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://api.drupal.org/api/drupal/modules%21block%21block.api.php/7
https://drupal.org/developing/api/8/plugins

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

27 THE ULTIMATE GUIDE TO DRUPAL 8

Most of this is very similar to the Controller example; a plugin is a class that in this

case extends from a base class (BlockBase) that takes care of some underlying

things for you. The Block API itself is housed in the BlockPluginInterface,

which the BlockBase class implements.

Note that interfaces in general expose and document various APIs in a

discoverable and IDE-friendly way. A great way to learn about the new APIs in

Drupal 8 is by browsing through the interfaces that are provided.

The comments above the class are called annotations. At first it might seem

strange for PHP comments to be used for specifying metadata that affects the

logic of the software, but this technique is now widely used by many modern PHP

libraries and accepted by the PHP community. Its benefit is that it keeps the class

metadata in the same file as and right next to the class definition.

Drupal 7: Hooks

In Drupal 7 and earlier, the extension mechanism used is the concept of

hooks. As an API author, you can declare a hook using functions like

module_invoke_all(), module_implements(), drupal_alter(),

and so on. For example:

<?php
 // Compile a list of permissions from all modules for
 // display on admin form.

 foreach (module_implements('permission') as $module) {
 $modules[$module] = $module_info[$module]['name'];
 }
?>

If you wanted a module to respond to this event, you would create a function

named modulename_hookname(), and declare its output in a way that the

hook implementation expected. For example:

<?php
/**
 * Implements hook_permission().
 */
function menu_permission() {
 return array(
 'administer menu' => array(
 'title' => t('Administer menus and menu items'),
),
);
}
?>

Although this is a clever extension hack that is mostly the result of Drupal’s age

(Drupal started in 2001 when PHP3 was all the rage and when there was little

support for OO code and the like), there are several tricky bits:

 � This “name a function in a special way” extension mechanism is very much a
Drupalism, and developers coming to Drupal struggle to understand it at first.

 � At least four different functions can trigger a hook: module_invoke(),

module_invoke_all(), module_implements(), drupal_alter(), and
more. This makes finding all the available extension points in Drupal
very difficult.

 � No consistency exists between what hooks expect. Some are info style hooks
that want an array (sometimes an array of arrays of arrays of arrays), others
are info-style hooks that respond when a particular thing happens like cron
run or a node is saved. You need to read the documentation of each hook to
understand what input and output it expects.

http://www.acquia.com
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Block!BlockBase.php/class/BlockBase/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Block!BlockBase.php/class/BlockBase/8
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.htm
https://api.drupal.org/api/drupal/includes%21module.inc/group/hooks/7

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

28 THE ULTIMATE GUIDE TO DRUPAL 8

Drupal 8: Events

Although hooks are definitely still prevalent in Drupal 8 for most event-driven

behavior (the info style hooks have largely moved to YAML or Plugin annotations),

the portions of Drupal 8 that are more closely aligned to Symfony (for example,

bootstrap/exit, routing system) have largely moved to Symfony’s Event

Dispatcher system. In this system, events are dispatched at runtime when certain

logic occurs, and modules can subscribe classes to the events to which they want

to react.

To demonstrate this, let’s take a look at Drupal 8’s configuration API, helpfully

housed in core/lib/Drupal/Core/Config/Config.php. It defines a variety of

CRUD methods such as save(), delete(), and so on. Each method dispatches

an event when finished with its work, so other modules can react. For example,

here’s Config::save():

<?php
 public function save() {
 // <snip>Validate the incoming information.</snip>

 // Save data to Drupal, then tell other modules this was
 // just done so they can react.

 $this->storage->write($this->name, $this->data);
 // ConfigCrudEvent is a class that extends from Symfony’s
 // "Event" base class.
 $this->eventDispatcher->dispatch(ConfigEvents::SAVE, new

ConfigCrudEvent($this));
 }
?>

As it turns out, at least one module needs to react when the configuration is saved:

the core Language module. Because if the configuration setting that was just

changed was the default site language, it needs to clear out compiled PHP files so

the change takes effect.

To do this, Language module does three things:

1. Registers an event subscriber class in its language.services.yml file (this is a

configuration file for the Symfony Service Container for registering reusable

code):

 language.config_subscriber:
 class: Drupal\language\EventSubscriber\ConfigSubscriber
 tags:
 - { name: event_subscriber }

2. In the referenced class, implements the EventSubscriberInterface and

declares a getSubscribedEvents() method, which itemizes the events that

it should be alerted to and provides each with one or more callbacks that should

be triggered when the event happens, along with a “weight” to ensure certain

modules that need to can get the first/last crack at the object can (heads-up:

Symfony’s weight scoring is the opposite of Drupal’s):

 <?php
 class ConfigSubscriber implements EventSubscriberInterface {
 static function getSubscribedEvents() {
 $events[ConfigEvents::SAVE][] = array('onConfigSave', 0);
 return $events;
 }
 }
 ?>

3. Defines the callback method, which contains the logic that should happen when

the configuration is saved:

 <?php
 public function onConfigSave(ConfigCrudEvent $event) {
 $saved_config = $event->getConfig();
 if ($saved_config->getName() == 'system.site' &&

 $event- >isChanged('langcode')) {
 // Trigger a container rebuild on the next request.
 PhpStorageFactory::get('service_container')

->deleteAl();
 }
 }
 ?>

http://www.acquia.com
http://symfony.com/doc/current/components/event_dispatcher/introduction.html
http://symfony.com/doc/current/components/event_dispatcher/introduction.html
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Config%21Config.php/class/Config/8 l
http://symfony.com/doc/current/book/service_container.html
https://api.drupal.org/api/drupal/core%21modules%21language%21src%21EventSubscriber%21ConfigSubscriber.php/class/ConfigSubscriber/8
http://api.symfony.com/2.4/Symfony/Component/EventDispatcher/EventSubscriberInterface.html

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

29 THE ULTIMATE GUIDE TO DRUPAL 8

Overall this buys us a more explicit registration utility so that a single module can

subscribe multiple classes to individual events. This allows us to avoid situations in

the past where we had switch statements in hooks or multiple unrelated sets of

logic competing for the developer’s attention in a single code block. Instead, this

provides the ability to separate logic into separate and distinct classes. This also

means that our event logic is lazy loaded when it needs to be executed, not just

sitting in PHP’s memory at all times.

Debugging events and finding their implementations is also pretty straightforward.

Instead of a handful of procedural PHP functions that may or may not have

been used to call your hook, the same Event Dispatcher is used throughout the

system. In addition to this, finding implementations is as simple as grepping for the

appropriate Class Constant, for example, ConfigEvents::SAVE.

Logically, the event system rounds out the transition to an OO approach. Plugins

handle info-style hooks and hooks that were called subsequent to an info hook.

YAML stands in place for many of our explicit registration systems of old, and the

event system covers event-style hooks and introduces a powerful subscription

methodology for extending portions of Drupal core.

...and much, much more!
You can find a great introduction to Drupal 8’s API changes at the revamped

D8 landing page of api.drupal.org where you’ll find a list of grouped topics to

orient you to Drupal 8.

http://www.acquia.com
https://api.drupal.org/api/drupal/8

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

30 THE ULTIMATE GUIDE TO DRUPAL 8

You can also see https://drupal.org/list-changes for the full list of API changes

between Drupal 7 and Drupal 8. Maybe grab a drink first. Each API change record

includes before/after code examples to help you migrate, as well as pointers to

which issue(s) introduced the change and why.

So Much Typing
It’s true that moving to modern, OO code generally involves more verbosity than

procedural code. To help you over the hurdles, check out the following projects:

 � Drupal Module Upgrader: If you’re looking to port your modules from
Drupal 7 to Drupal 8, look no further than this project. It can either tell you
what you need to change (with pointers to the relevant change notices) or
automatically convert your code in-place to Drupal 8. You can learn more
about DMU in this podcast interview with the maintainer.

 � Console: For new modules, this project is a Drupal 8 scaffolding code
generator that will automatically generate .module/.info files, PSR-4 directory
structures, YAML, and class registrations for routes, and more!

 � Most Drupal 8 core developers swear by the PhpStorm IDE, and the latest
version has lots of great features for Drupal developers. If you’re one of
the top contributors to the Drupal ecosystem, you can get it for free! (Note
that this isn’t product placement. You should join #drupal-contribute at any
time of the day or night and see if you can go longer than an hour without
someone mentioning PhpStorm.)

http://www.acquia.com
https://drupal.org/list-changes
https://www.drupal.org/project/drupalmoduleupgrader
https://www.acquia.com/resources/podcasts/acquia-podcast-154-help-build-drupal-8-module-upgrader
https://www.drupal.org/project/console
http://www.jetbrains.com/phpstorm
http://confluence.jetbrains.com/display/PhpStorm/Drupal+Development+using+PhpStorm
https://assoc.drupal.org/node/18548

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

31 THE ULTIMATE GUIDE TO DRUPAL 8

Your Burning Questions

When will Drupal 8 be released? What do I need to do to upgrade? I have so many

questions.

Why Should I Care about Drupal 8?
Drupal started first and foremost as a tool for developers and provided a set of

APIs to allow building website elements in code, such as content entry forms,

admin pages, and sidebar blocks. In later releases of Drupal, and particularly in

Drupal 7, the emphasis was on making Drupal approachable for less technical

users, providing user interfaces for foundational tasks (installation, data modeling,

information architecture, landing pages, and so on). Most Drupal sites today

download and configure a number of contributed projects for features such as a

WYSIWYG editor, Views, and so on. And with that combination of core + contrib,

Drupal runs some of the biggest and most important sites on the web.

Drupal 8 builds on the success of Drupal 7 by incorporating more expected

functionality out of the box, such as authoring experience improvements, complete

multilingual functionality, and numerous site builder features. Drupal 8 is more in

line with the web landscape of today, with its mobile-first approach and revamped

front end. And, true to its developer roots, it offers numerous back-end features

and modernized, OO code base. All around, Drupal 8 is a more powerful release

with capabilities for content authors, site builders, developers, and designers alike.

It is built in a future-proof way so that it can act as a solid foundation for projects no

matter what technologies, devices, or services come out next.

That said, Drupal 7 is a stable, robust, and mature platform that will be supported

for several more years to come. And much of the functionality within Drupal 8 is

available in some form in Drupal 7 (a later answer digs into more details). Drupal 8

will be great, but so is Drupal 7 if you just can’t wait. And either way, it’s still a great

idea to start learning about Drupal 8 now, so you can be prepared when it suits

your future project needs.

Wow, Drupal 8 Sounds Great! What’s Standing in the
Way of It Being Released?
Once the number of critical issues (bugs and tasks) hits zero, a Drupal 8

“release candidate” will be created. Once a release candidate has been out in the

wild with no new critical issues reported, Drupal 8.0.0 will be tagged and released,

to much enthusiastic applause!

You can see how close or far away Drupal 8 is from shipping at any given time by

over to www.drupal.org/drupal-8.0/get-involved. The sidebar block shows the

number of critical issues left to go.

http://www.acquia.com
http://www.drupalshowcase.com
https://drupal.org/project/issues/search/drupal?status%5b%5d=Open&priorities%5b%5d=400&categories%5b%5d=1&categories%5b%5d=2&version%5b%5d=8.x&issue_tags_op=%3D
http://www.drupal.org/drupal-8.0/get-involved

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

32 THE ULTIMATE GUIDE TO DRUPAL 8

What Happens after Drupal 8 Is Released?
Parties. Lots and lots of parties.

But then, starting with Drupal 8.0.0, the Drupal project is moving to a new

release cycle, which in addition to standard monthly bug fix and security releases

(8.0.1, 8.0.2...) introduces semi-annual minor releases of core (8.1.0, 8.2.0,

and so on. These releases can include new features, backward-compatible API

improvements, and more. After several minor versions, a “Long-Term Support”

(LTS) release of Drupal 8 will be created and Drupal 9 development will begin.

This means Drupalistas will no longer have to wait N years for new core

functionality; we can iterate on features and APIs every few months until the

platform reaches maturity. It also means that those who are more risk-averse and

want stability over shiny things can stick to LTS releases and only move every

several years (even leap-frogging major versions). Hooray!

When Should I Actually Start Using Drupal 8?
The answer to that depends on who you are:

 � If you’re a module developer, you should start caring about Drupal 8 right now.
It’s still possible to provide useful feedback on APIs and ensure Drupal 8 ships
with everything you need to get your projects ported. But bear in mind that
some of Drupal 8’s APIs will still be changed before release if needed to fix
critical issues, so you may still need to make code adjustments post-RC.

 � If you’re a documentation author, translator, or designer, note that Drupal 8’s
user interface, interface text, and markup are not finalized until the first release
candidate, so you’d want to wait until RC1 to focus heavily on user-facing
documentation, translations, or themes (though by all means, adventurous
contributors should start now to provide feedback while we can still fix things).

 � If you’re an early adopter Drupal user with developers on staff who don’t mind
porting modules and fixing core bugs along the way, and have a launch date in
late 2015 or 2016, you may want to start building your D8 sites once Drupal 8
hits a late beta or a RC. This would be a particularly good idea if you need some
of the features Drupal 8 offers.

 � Most users will want to use Drupal 8 a few months after Drupal 8’s release,
when various contributed modules are ported. Keep your eyes on the Drupal
project usage graph. When the D7 and D8 lines cross, it may be a good time
for you to make the jump, because it means there are more D8 users than D7,

so most of the hard work has been done for you already.

Well, Dang. So What Should I Do in the Meantime?
Use Drupal 7. Drupal 7 is a stable, mature, robust, powerful, well-supported

framework which will be maintained with bug fixes until after the LTS release of

Drupal 8, and supported with security fixes until Drupal 9’s LTS release (several years

from now). And a number of the great features in Drupal 8 are available in Drupal 7 as

well, with contributed modules.

Drupal 8 Core Feature Drupal 7 Contrib Equivalent

WYSIWYG CKEditor: https://drupal.org/project/ckeditor

In-Place Editing Quick Edit: https://drupal.org/project/quickedit

Responsive Toolbar Mobile Friendly Navigation Toolbar:
https://drupal.org/project/navbar

Responsive Front-End Theme Omega, Zen, Adaptive, Aurora, etc. base themes

Responsive Admin Theme Ember: https://drupal.org/project/ember

Responsive Images Picture: https://drupal.org/project/picture

Responsive Tables Responsive Tables:
https://drupal.org/project/responsive_tables

Simplified Overlay Escape Admin: https://drupal.org/project/escape_admin

Multilingual Internationalization: https://drupal.org/project/i18n
Entity Translation: https://drupal.org/project/entity_translation
(and several additional modules)

Better Blocks Bean: https://drupal.org/project/bean

Configuration Management Features: https://drupal.org/project/features
(provides exportable files that can be used in deployments)

Web Services RESTful Web Services: https://drupal.org/project/restws

http://www.acquia.com
https://www.drupal.org/node/2135189
https://www.drupal.org/node/2135189
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://drupal.org/project/entity_translation
https://drupal.org/project/bean

 acquia.com | 888.922.7842 | 1.781.238.8600 | 25 Corporate Drive, Burlington, MA 01803

33 THE ULTIMATE GUIDE TO DRUPAL 8

What about the Upgrade Path?
Oh you had to ask, didn’t you?

 � For your site’s content (users, articles, and so on) and many configuration
settings (variables, block settings, and so on), Drupal 8 will provide a migration
path from both Drupal 6 (already in core) and Drupal 7 (currently under
construction) to Drupal 8 that will cover core modules. (Contributed and custom
modules will need to write their own migration path to cover their data.)
Basically, you’ll keep your Drupal 6/7 site running while you build your Drupal 8
site and then run a script similar to the current update.php to move its contents
over. When things look good, swap out the web roots. Almost no downtime!

 � For your site’s contributed modules, download and install the 7.x version of the
Upgrade Status module, which shows a handy overview of your module’s site
and the current D8 porting status.

 � For your site’s custom modules, you need to port those yourself. The
Drupal Module Upgrader project can help automate some of this and
generate a report of other things to change. (However, it is not omniscient,
so you will still need to fix some things by hand.)

 � For your site’s custom theme, which must be converted to Twig, check the
Twigifier project that attempts to automate much of this work.

So, in short, your upgrade path depends a lot on the specifics of your site and how

it’s put together. In general, you’ll have a much easier time moving to Drupal 8 if

you stick to well-vetted contributed modules versus custom code. Plan out your

current site builds accordingly.

For other tips on making your Drupal 6/7 site Drupal 8 ready, check out

www.acquia.com/blog/getting-your-site-ready-drupal-8.

How Can I Help?
Want Drupal 8 to come out faster? It can, with your help.

 � The most direct way is to help fix critical issues. Keep your eyes posted on
Drupal Core Updates, which always has the latest spots that need particular
attention.

 � If you’re new to Drupal core development, or want a pointer to some useful
things to work on by a real person, check out core mentoring hours
twice-weekly on IRC.

 � Want to help with the Drupal 8 migration path? Check out the
IMP (Migrate in core) team.

 � Want to help with the Drupal 8 documentation? Check out the
Current documentation priorities.

 � Want to learn Drupal 8 APIs and help other developers in the process?
Help port Examples for Developers to Drupal 8.

 � Want to save yourself and others lots of time porting modules?
Help write Drupal Module Upgrader routines.

Thank you!
Let’s give a virtual round of applause to more than 2,500 contributors

to Drupal 8 so far! Now, join them!

LETS TALK

SKU 00476-150109-EBOOK

http://www.acquia.com
https://www.acquia.com/blog/d8migrate
https://drupal.org/project/upgrade_status
https://drupal.org/project/drupalmoduleupgrader
https://www.drupal.org/sandbox/forest/1965070
http://www.acquia.com/blog/getting-your-site-ready-drupal-8
https://drupal.org/project/issues/search/drupal?status%5b%5d=Open&priorities%5b%5d=400&categories%5b%5d=1&categories%5b%5d=2&version%5b%5d=8.x&issue_tags_op=%3D
https://groups.drupal.org/core/twidc
https://drupal.org/core-office-hours
http://groups.drupal.org/imp
https://drupal.org/node/1005304
https://drupal.org/project/drupalmoduleupgrader
https://drupal.org/project/drupalmoduleupgrader
http://ericduran.github.io/drupalcores
http://ericduran.github.io/drupalcores
https://www.drupal.org/core-office-hours
http://www.acquia.com/talk-to-sales%20
http://www.acquia.com
http://www.twitter.com/acquia
http://www.twitter.com/acquia
http://www.facebook.com/acquia
http://www.linkedin.com/company/167056
http://www.linkedin.com/company/167056
http://plus.google.com/%2Bacquia/posts

